The roles of hedgehog and engrailed in patterning adult abdominal segments of Drosophila.

نویسندگان

  • A Kopp
  • M A Muskavitch
  • I Duncan
چکیده

We present evidence that hedgehog (hh) protein secreted by posterior compartment cells plays a key role in patterning the posterior portion of the anterior compartment in adult abdominal segments. Loss of function of hh in the hh(ts2) mutant causes the loss of posterior tergite characteristics in the anterior compartment, whereas ectopic expression driven by hs-hh or the gain-of-function allele hh(Mir) causes transformation of anterior structures toward the posterior. FLP-out hh-expressing clones in the anterior compartment induce surrounding wild-type cells to produce posterior tergite structures, establishing that hh functions nonautonomously. The effects of pulses of ectopic expression driven by hs-hh indicate that bristle type and pigmentation are patterned by hh at widely different times in pupal development. We also present evidence that the primary polarization of abdominal segments is symmetric. This symmetry is strikingly revealed by ectopic expression of engrailed (en). As expected, this transforms anterior compartment cells to posterior compartment identity. In addition, however, ectopic en expression causes an autonomous reversal of polarity in the anterior portion of the anterior compartment, but not the posterior portion. By determining the position of polarity reversal within en-expressing clones, we were able to define a cryptic line of symmetry that lies within the pigment band of the normal tergite. This line appears to be retained in hh(ts2) mutants raised at the restrictive temperature, suggesting it is not established by hh signaling. We argue that the primary role of hh in controlling polarity is to cause anterior compartment cells to reverse their interpretation of an underlying symmetric polarization. Consistent with this, we find that strong ectopic expression of hh causes mirror-symmetric double posterior patterning, whereas hh loss of function can cause mirror-symmetric double anterior patterning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anteroposterior patterning of Drosophila ocelli requires an anti-repressor mechanism within the hh pathway mediated by the Six3 gene Optix.

In addition to compound eyes, most insects possess a set of three dorsal ocelli that develop at the vertices of a triangular cuticle patch, forming the ocellar complex. The wingless and hedgehog signaling pathways, together with the transcription factor encoded by orthodenticle, are known to play major roles in the specification and patterning of the ocellar complex. Specifically, hedgehog is r...

متن کامل

Hox-controlled reorganisation of intrasegmental patterning cues underlies Drosophila posterior spiracle organogenesis.

Hox proteins provide axial positional information and control segment morphology in development and evolution. Yet how they specify morphological traits that confer segment identity and how axial positional information interferes with intrasegmental patterning cues during organogenesis remain poorly understood. We have investigated the control of Drosophila posterior spiracle morphogenesis, a s...

متن کامل

Segment polarity gene interactions modulate epidermal patterning in Drosophila embryos.

Each segment of a Drosophila larva shows a precisely organized pattern of cuticular structures, indicating diverse cellular identities in the underlying epidermis. Mutations in the segment polarity genes alter the cuticle pattern secreted by the epidermal cells; these mutant patterns provide clues about the role that each gene product plays in the development of wild-type epidermal pattern. We ...

متن کامل

hedgehog and engrailed: pattern formation and polarity in the Drosophila abdomen.

Like the Drosophila embryo, the abdomen of the adult consists of alternating anterior (A) and posterior (P) compartments. However the wing is made by only part of one A and part of one P compartment. The abdomen therefore offers an opportunity to compare two compartment borders (A/P is within the segment and P/A intervenes between two segments), and ask if they act differently in pattern format...

متن کامل

polyhomeotic controls engrailed expression and the hedgehog signaling pathway in imaginal discs

Polycomb group (PcG) genes maintain cell identities during development in insects and mammals and their products are required in many developmental pathways. These include limb morphogenesis in Drosophila melanogaster, since PcG genes interact with identity and pattern specifying genes in imaginal discs and clones of polyhomeotic (ph) null cells induce abnormal limb patterning. Such clones are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 124 19  شماره 

صفحات  -

تاریخ انتشار 1997